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Review

The term “organophosphate” (OP) is often 
used in the scientific and lay press to describe 
a large chemical class of insecticides and 
chemical warfare agents. OP insecticides, 
which include malathion and chlorpyrifos, 
among others, are among the most widely 
used agrochemicals for the control of insect 
pests in the world. Approximately 427 tons of 
OP insecticides were used for vector control in  
2003–2005 (Zaim and Jambulingam 2007), 
and > 36.5 million tons were used in agri-
culture in the United States in 2001 [Barr 
et  al. 2005; Centers for Disease Control 
and Prevention 2005; U.S. Environmental 
Protection Agency (EPA) 2006]. This level 
of use inevitably leads to increased human 
exposure and toxicity incidences both in the 
United States and worldwide (Claudio et al. 
2000; Goldman and Koduru 2000; Menzies 
and MacConnell 1998). A total of 136,881 
OP exposure incidents were reported to poi-
son control centers in the United States dur-
ing 1995–2004 (Sudakin and Power 2007), 
and in 2007 the American Association of 
Poison Control Centers received 96,307 calls 
associated with OP exposure (Bronstein et al. 
2008).

The principle trigger of neurotoxicity after 
exposure to OPs is presumed to result from 
the inhibition of acetylcholinesterase (AChE) 
(Ballantyne and Marrs 1992; Broomfield 
et  al. 1995; Eto 1974; Fest and Schmidt 
1973; Fukuto 1990). When AChE is inhib-
ited by an OP, it is unable to hydrolyze the 

neurotransmitter acetylcholine (ACh), which 
reaches toxic concentrations in the neural syn-
apse, causing hyperstimulation of cholinergic 
receptors, resulting in tremors, lacrimation, 
and bradyarrhythmia and, if untreated, may 
become lethal (Costa 2006; Sultatos 1994). 
A number of noncholinergic illnesses have 
also been linked to OPs, including ataxia, 
delayed neuropathy, intermediate syndrome, 
pulmonary toxicity, genotoxicity, Parkinson 
disease, and vision loss (Arima et al. 2003; 
Dahlgren et al. 2004; Jayawardane et al. 2008; 
Niven and Roop 2004; Yanagisawa et  al. 
2006; Zwiener and Ginsburg 1988). Widely 
reported but unsubstantiated health problems 
associated with OP exposure include flu-like 
symptoms, nausea, weakness, and dizziness 
(Gordon 1993; Rowsey and Gordon 1999; 
Solomon et al. 2007; Stephens et al. 1995). 
Low-dose OP exposure causes minimal inhi-
bition of AChE and no obvious cholinergic 
symptoms yet has been linked to memory loss, 
sleep disorder, depression, learning and lan-
guage impairment, and decreased motor skills 
in humans (Johal et al. 2007; Lockridge and 
Masson 2000; Slotkin et al. 2008; Timofeeva 
et al. 2008). Despite these numerous reports 
of OP-associated illnesses, few if any have 
been correlated with a specific protein, path-
way, or cellular event that has been modified, 
disrupted, or regulated by an OP.

Recent studies have associated adverse 
neurologic and growth outcomes in children 
exposed to certain OPs in utero (Jacobson and 

Jacobson 2006; Whyatt et al. 2004, 2005). 
A neuropsychological assessment of children 
exposed to OPs showed deficits in inhibitory 
motor control (Kofman et al. 2006). Two 
associated studies correlated developmental 
exposure with abnormal reflexes (Young et al. 
2005) and mental developmental problems 
(Eskenazi et al. 2007). OPs are thought to 
cause developmental neurotoxicity and long-
term cognitive and behavior effects through 
cholinergic mechanisms, interference with 
nonenzymatic functions of AChE, and effects 
on cell signaling pathways involved in neural 
cell differentiation (Slotkin 2004).

Many claims of illness due to OP-based 
exposure have not been correlated with dose 
largely because of inadequate methods of 
analysis and the transient nature of OP com-
pounds. The environmental lifetime of OP 
insecticides is typically considered to be rapid 
(days), but in indoor applications certain 
OPs can survive intact from months to years 
(Fenske et al. 2000). Still, the rapid break-
down of OPs in vivo or in the environment 
makes their direct measurement challenging, 
and rough estimates or indirect measures of 
exposure are conducted by identification of 
OP metabolites or degradation products. For 
example, gas chromatography (GC) coupled 
with mass spectrometry (MS) has been used 
to analyze the primary metabolites of OP 
compounds, typically the hydrolyzed acids 
of dialkylphosphates [RO2P(O)OH] in urine 
(Barr et al. 2005).

For decades, exposure to OP insecticides 
has been determined using a blood cholin-
esterase test, a colorimetric assay in which a 
reduction in basal cholinesterase activity in 
whole blood or serum is used to indicate OP 
exposure (Ellman et al. 1961). Plasma butyryl-
cholinesterase (BChE) assays are used for the 
early, acute effects of OP exposure because 
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red blood cell AChE assays are less sensitive 
(Wilson et al. 1996). By design, the blood 
cholinesterase test measures only the “active” 
form of the enzyme, but it is the inactive or 
OP-adducted form of the enzyme that is the 
more quantifiable biomarker.

To address this, investigators have begun 
to employ computational, high-throughput, 
bioinformatic, and proteomic methods to 
identify and quantify molecular biomarkers 
to a number of environmental- and exposure- 
based diseases. For this review we identi-
fied general and specific research reports 
related to OP insecticides, OP toxicity, OP 
structure, and protein MS by searching 
PubMed (National Center for Biotechnology 
Information 2009) and Chemical Abstracts 
(Chemical Abstract Service, Columbus, OH) 
for articles published before December 2008. 
Here, we summarize the use of protein MS as 
a valuable tool to identify OP-adducted pro-
teins and as a potentially promising approach 
to deconvolute a number of OP-triggered 
illnesses. We also discuss MS analysis of pro-
teins adducted by chemical nerve agents and 
the use of customized probes for identifica-
tion of OP-modified proteins. To focus our 
discussion, we do not include genomic studies 
of protein regulation changes resulting from 
OP exposure or the MS of OP compounds.

Structure and Reactivity of OP 
Compounds
The overall class of organophosphorus (V) 
compounds includes a number of useful struc-
ture types, among which are the OPs, which 
are functional group derivatives of phosphoric 
acid and include ester (phosphate), amide 
(phosphoramidate), thiolester (phosphoro
thiolate), difunctional and trifunctional forms, 
and combinations of these heteroatomic link-
ages. Unlike the structurally similar carboxy
lic acids, however, OP compounds can vary 
as phosphoryl (P=O) or as thiophosphoryl 
(P=S). These subtle atomic differences lead 
to a wide array of structural types that vary 
dramatically in their chemical, physical, and 
biochemical properties. Importantly, the 
“ate” ending associated with heteroatom-
attached groups designates the structure as 

a phosphoric acid functional group deriva-
tive. This description also includes structures 
containing one phosphorus–carbon (P–C) 
group, termed a phosphonate, and two P–C 
groups, termed a phosphinate. When three 
P–C bonds occur, the structure is no lon-
ger a phosphoric acid derivative and there is 
no “ate” ending (e.g., Ph3P=O is triphenyl
phosphine oxide). Because most insecticides 
contain three phosphorus-heteroatom groups, 
the term “organophosphate” is both useful 
and chemically accurate for the purposes of 
this review. However, “organophosphorus 
insecticide” is a useful description and supe-
rior when searching certain databases.

Malathion, parathion, chlorpyrifos, azin-
phos, and diazinon are representative OP 
insecticides (Figure 1, structure 1). These OP 
insecticides are structurally similar and share 
diester and thionate (P=S) groups. For exam-
ple, parathion, chlorpyrifos, and diazinon are 
diethyl phosphorothionates that vary only in 
the leaving group (Z; see Figure 1). Malathion 
and azinphos have a thiol as the leaving group. 
When both P=S and P–SR groups are present, 
the structure is a thiolothionate, or the more 
general term, dithioate. Although an exten-
sive examination of OP insecticide structure is 
beyond the scope of this review, it is important 
to note that when leaving group differences 
are ignored, most OP insecticides fall into just 
two general classes: dimethoxy OP (DMOP) 
and diethoxy OP (DEOP). A smaller frac-
tion of OP insecticides do not share these 
structural traits; acephate, for example, is a 
phosphoramidate with an oxon (P=O) bond 
and a phosphoramide (P–N) bond. 

For OP insecticides to impart their action, 
they first require a change in structure from 
a thionate to an oxon (structures 1 and 2, 
respectively, in Figure 1). The oxon is mark-
edly more reactive and likely the primary 
chemical species responsible for most inter
actions with biomolecules as well as a key 
intermediate in route to hydrolytic metabo
lites. After an OP insecticide is converted 
to the oxon, it is known to react quickly 

with certain proteins to form OP adducts 
(Figure 2). A governing property of most 
OPs, therefore, is that they covalently modify 
proteins to form OP-adducted proteins in 
which protein function can be compromised 
concomitant with an increase in the pro-
tein’s molecular weight due to the addition 
of the OP. Covalent modification or organo-
phosphorylation of a protein is a distinctive 
process because most organic and inorganic 
compounds transiently bind or form com-
plexes with proteins but less frequently form a 
covalent bond with the protein.

Phosphorylation by insecticides is best 
exemplified by the inhibition of the primary 
target of OP insecticides, AChE (Figure 2). 
OP inhibition occurs at an essential serine 
(ser) residue synchronous with the ejection 
of a leaving group (Z) to yield a stable cova-
lent bond, forming an OP–AChE adduct. 
OP-inhibited AChE can then reactivate  
(kreact) via cleavage of the phosphoserine bond 
(Ashani et al. 1990, 1995, 1998; Langenberg 
et  al. 1988; Lanks and Seleznick 1981; 
Wilson and Henderson 1992; Wilson et al. 
1992) or undergo “aging” (Harel et al. 1991), 
a slow, irreversible process (kaging << ki) that 
results in an OP–AChE adduct that contains 
a phosphate oxyanion (Doorn et al. 2000; 
Lotti et al. 1984).

The overall mechanism of AChE inhibi-
tion, reactivation, and aging by OP oxons is 
highly conserved because most OP insecti-
cide oxons bear either dimethoxy or diethoxy 
groups. Therefore, loss of the leaving group Z 
affords two predominant forms of OP–AChE 
adducts: the DMOP (R=Me) and DEOP 
(R=Et). DEOP-adducted AChE is expected 
to be more stable and slower to reactivate and 
should undergo aging (correlated with the 
increased size of the R group). The dimethoxy 
analog should reactivate more rapidly and 
undergo less aging, although methyl esters 
undergo hydrolysis more rapidly than do 
ethyl esters. OP insecticide oxons, there-
fore, adduct AChE to form DMOP–AChE 
and DEOP–AChE structures that lead to 

Figure 1. Structure of OP insecticides and select 
OP agents. Abbreviations: Et, ethyl; Me, methyl; 
Ph, phenyl. For malathion, R = Me, Z = SCH(CO2Et)
CH2CO2Et; parathion, R = Et, Z = O–Ph–p–NO2; chlo-
rpyrifos, R = Et, Z = o-2,3,5-trichloropyridinol; azin-
phos, R = Et, Z = SCH2–3-benzenetriazole-4-one; 
diazinon, R = Et, Z = O[6-Me, 4-iPr-pyrimidinol]. 
Parathion, chlorpyrifos, azinphos, and diazinon are 
also available as dimethyl esters. 
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two aged forms, monomethoxy phosphoryl 
(Y=OMe) and monoethoxy phosphoryl 
(Y=OEt) (Figure 2), respectively. These con-
vergent mechanisms furnish investigators 
with some preliminary molecular targets for 
defining the OP proteome (the complement 
of proteins found in cells, tissues, or organ-
isms that react with OP compounds) because 
the overall mechanism of organophos
phorylation is most likely conserved for most 
other proteins (e.g., receptors, enzymes). In a 
like manner, OP oxons of any structure can 
modify AChE or any protein with a reactive 
residue if a suitable leaving group Z is pres-
ent. In the case of the general OP structure 
(Figure 1, structure 3), loss of the Z group 
would generate a protein-bearing XYP(O) 
group attached to a serine. 

A key difference is that biochemical phos-
phorylation and dephosphorylation, which 
are mediated by kinases and phosphatases, 
result in the addition and loss of an inor-
ganic PO4

2– group. Although this is clearly 
different from the organophosphorylation 
process, it is entirely possible that OP insec-
ticide oxons react with the same proteins 
that are substrates of kinases/phosphatases. 
Posttranslational phosphorylation is relatively 
well understood and is now a routine part of 
proteomics analysis (Godovac-Zimmermann 
et al. 1999; Larsen et al. 2001).

The Search for OP Biomarkers: 
Possible Pathways
Toxic effects due to OP exposure likely begin 
with covalent modification (adduction) of a 
protein and thereby constitute an early bio-
marker of exposure. For example, the well-
documented OP neurotoxic pathologies are 
believed to result either directly or indirectly 
from stepwise phosphorylation of AChE 
(OP–AChE adduct), cholinergic hyper
stimulation, and resultant cellular responses 
(Figure 3, top pathway). However, the con-
nection between OP–protein adducts other 
than AChE and the resulting cellular/toxic 
responses have not been established (Figure 3, 
bottom pathway). A clearer understanding of 
how alternate cellular pathways are modulated, 
altered, or blocked in response to OP expo-
sure is needed so that more accurate, pathway-
oriented biomarkers can be identified.

More recently, investigators have begun 
to investigate covalent OP adduction of non-
AChE protein targets as a possible causative 
step in other toxic responses. The involvement 
of OPs at individual ACh receptors (nAChR, 
mAChR) and noncholinergic protein targets 
has been reported with increasing frequency 
(Albuquerque et al. 1988; Bomser and Casida 
2001; Corrigan et  al. 1994; Ehrich et  al. 
1994; Eldefrawi and Eldefrawi 1983; Huff 
et al. 1994; Katz and Marquis 1992; Li et al. 
2000a, 2000b; Pala et al. 1991; Quistad and 

Casida 2000; Quistad et  al. 2000, 2001; 
Richards et  al. 1999; Schuh et  al. 2002; 
van den Beukel et al. 1998; Ward et al. 1993; 
Ward and Mundy 1996). However, only a 
few investigations have identified OP-altered 
protein targets, despite the clear evidence sug-
gesting involvement in toxic mechanisms. In 
a biomarker search, investigators can point to 
pathways that individually or collectively may 
correlate with various mechanisms of toxic-
ity (e.g., Figure 3). Overall, OP compounds 
react with AChE to form an OP–AChE 
adduct (Figure 3, top pathway) and also with 
other yet uncharacterized and unidentified 
proteins to form OP–protein adducts that 
trigger new cellular outcomes (Figure 3, bot-
tom pathway) and/or produce OP-adducted 
biomolecules that directly modulate, regulate, 
or shut down biochemical pathways (Bomser 
and Casida 2000, 2001; Bomser et al. 2002). 
Clearly, integrative proteomic and genomic 
approaches are needed to characterize these 
OP–protein biomarkers and validate them 
with any downstream effects. Such infor-
mation would be invaluable for therapeu-
tic intervention; body burden and tolerance; 
identification of genetic, age, race, and sex 
susceptibility; exposure prevention; and the 
overall assessment of OP safety.

Protein MS 
Proteomics and protein MS are powerful diag-
nostic methods to analyze and identify pro-
teins and their modifications based on the 
molecular weight of peptide fragments result-
ing from enzymatic digestion. These meth-
ods can be conducted with a variety of mass 
analysis instruments, of which matrix-assisted 
laser desorption ionization (MALDI) and  
quadrupole-time of flight (QTOF) are among 
the most common in OP–protein studies. 
MALDI offers high-throughput, medium-
resolution mass analysis (fingerprinting) of 
peptides and can also mass identify proteins 
after formulation with a matrix. MALDI is 
relatively easy to use and requires no chro-
matographic separation of the peptide digest, 
although separation of peptides can greatly 
assist identification. Most QTOF instru-
ments use electrospray ionization (ESI) and 
allow for direct injection or use of HPLC 

(high-performance liquid chromatography) 
for separation of peptide analytes before 
MS. QTOF instruments are high-resolution 
instruments that can identify peptides using 
sequence information to provide greater sta-
tistical validation of both peptide and pro-
tein. Ion-trap and triple-quadrupole mass 
spectrometers are other instruments used in 
proteomics and protein MS experiments. 
Although MALDI and QTOF instruments 
use databases to identify peptides and the pro-
tein, the sequence information and mass accu-
racy provided by the QTOF ensure a more 
accurate peptide match and protein identifica-
tion. An additional consideration in choice of 
mass spectrometer is the mass-to-charge ratio 
(m/z), which plays a role in the size of the pep-
tide that can be analyzed accurately. Standard 
MALDI experiments detect single-charged 
peptides, meaning the instrumental mass 
observed correlates with the peptide mass. 
QTOF electrospray instruments (and other 
ion-based MS techniques) can detect singly, 
doubly, and triply charged peptide ions (e.g., a 
peptide weighing 4,200 m/z affords 2,100 m/z 
for a doubly charged ion and 1,400 m/z for a 
triply charged ion), which can be an advantage 
in the identification and sequencing of large-
molecular-weight peptides.

Both instruments are useful to analyze 
OP-modified protein adducts, but certain 
ionization methods (or cone voltages) used 
by electrospray MS instruments may cause 
cleavage of the somewhat labile phospho
ester bonds formed with serine, threonine, 
or tyrosines (Figure 4). The loss of a (post
translational) phosphate group from a 
peptide during electrospray MS analysis 
(X=Y=O–) can restore the serine residue or 
cause an elimination reaction that results in 
a dehydroalanine residue via the net loss of 
a water molecule (m/z 18) from the peptide 
(Figure 4). In addition to ionization condi-
tions, the matrix used in MALDI may play 
a role in the stability of phosphoester link-
age and its mass analysis. Several key studies 
and useful reviews have been published on 
MS-based dephosphorylation (reviewed by 
Sickmann and Meyer 2001) and will be help-
ful to those seeking to investigate OP–protein 
adducts (Adamczyk et al. 2001; Bennett et al. 

Figure 3. Common sequence of cholinergic events and alternate sequence after OP exposure. The white 
pathway (top) shows the stepwise phosphorylation of AChE (OP–AChE adduct), cholinergic hyperstimula-
tion, and resultant cellular responses. The blue pathway (bottom) shows possible connections between 
OP–protein adducts other than AChE and the resulting cellular/toxic responses. 
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2002; Jiang and Wang 2004; Qian et  al. 
2003; Thaler et al. 2003; Tseng et al. 2005). 
The use of barium hydroxide [Ba(OH)2] to 
induce formation of the dehydroalanine resi-
due as a method to identify phosphorylation 
(Noort et al. 2006) is discussed below (see 
“MS Analysis of OP-Modified Proteins in 
Addition to Cholinesterases”).

MS of Cholinesterases and Their 
Active Site-Containing Peptides
Historically, AChE and BChE are the prin-
cipal targets covalently modified by OP com-
pounds. Specifically, covalent modification 
of the essential serine residue (Figure 2) on 
AChE is of prime importance in MS analy-
ses because this step initiates neurotoxic 

events. OP attachment to the serine residue 
represents the predominant if not definitive 
chemical pathway for analysis. Therefore, 
the molecular events that define esterase 
OP inhibition (including reactivation and 
aging; Figure 2) are likely to be similar to 
serine hydrolases, serine proteases, and other 
related proteins. Still, the assumption that 
serine is the only location for modification by 
OPs may be invalid, and steps are needed to 
develop methodology capable of identifying 
other OP-residue modifications.

First, it is important to show how 
OP–ChE adducts are identified by MS. In a 
typical experiment, a cholinesterase is inhib-
ited by an OP; the protein–ChE adduct is 
isolated; the protein is digested into peptide 
fragments (trypsin, chymotrypsin, etc.); the 
peptides are analyzed by MS; and the modi-
fied OP–peptide is identified using a database 
match. A high degree of conservation in the 
primary sequences of AChE and BChE has 
enabled rapid identification of OP-modified 
peptides from various species. Tied to this 
advantage is the obvious site of OP modifica-
tion: the catalytically active site serine. Unlike 
most investigations that require near complete 
N- to C-termini analysis to find one or more 
adducts, investigators have assumed that OP 
modification modifies only the active site ser-
ine hydroxyl. These two structural assump-
tions regarding cholinesterase reactivity toward 
OPs allowed investigators to narrow their mass 
analysis (ion selection) to a handful of peptide 
fragments, although multiple OP adducts are 
possible. Key to the OP–ChE protein adduct 
detection by MS, therefore, is the analy-
sis and identification of the corresponding 
OP-modified active-site peptide.

Although there are many methods for 
protein digestion, trypsin [cleaves at argin-
ine (R) or lysine (K) at the C-terminus], pep-
sin [cleaves at phenylalanine (F), tryptophan 
(W), or tyrosine (Y) at the N-terminus], and 
chymotrypsin (cleaves at F, W, or Y at the 
C-terminus) are the most widely used pepti-
dases. Cyanogen bromide [CNBr; cleaves at 
methionine (M)] has been used for chemical 
digestion before or after protease action. Key 
differences in the primary sequences of AChE 
and BChE result in active site-containing pep-
tide fragments (Figure 5) of different sizes after 
trypsin and chymotrypsin digests. Different 
sources of cholinesterase (horse, rat, mouse, 
fly, eel, etc.) will produce different peptide 
molecular weights because the sequence is not 
100% conserved. 

Likewise, CNBr chemical digestion pro-
duces peptides containing the active site; 
however, the methionine groups are spaced 
relatively far apart in the sequence. This results 
in larger peptides (Figure 5) that can be more 
difficult to analyze and identify. However, 
the combination of chemical and peptidase 

Figure 4. Dephosphorylation of peptides.
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digestions can be a powerful dual method for 
peptide analysis. In sum, understanding the 
predicted peptide fragments resulting from 
different digestion procedures allows research-
ers to plan their identification strategies.

There have been few attempts to map the 
entire AChE or BChE primary sequence using 
MS. Spaulding et al. (2006) sequenced a puri-
fied source of recombinant mouse AChE 
(rMoAChE) by ESI QTOF MS and found 
that the highest protein coverage (63%) and 
active-site peptide signal were achieved when 
the AChE:chymotrypsin ratio was 5:1. Some 
excellent early uses of MS to understand ChE 
structure were conducted by Rosenberry 
and colleagues, who deciphered the glyco
inositol phospholipid anchor and protein 
C-terminus of BChE (Haas et al. 1996; Haas 
and Rosenberry 1995; Roberts et al. 1988).

One of the more recent benefits of MS 
is the ability to directly measure the entire 
protein mass and, in turn, the possibility of 
directly measuring OP-adducted proteins by 
the corresponding increase in the native mass. 
Mechanistic studies such as these are facili-
tated when cholinesterase can be expressed in 
good quantity and pure form, which reduces 
interferences from more abundant proteins 
typically found in biological matrices. One 
of the earliest such studies directly measured 
human AChE (hAChE) mass at approximately 
64,700 Da (calculated at 64,695 Da) and 
OP-adduct masses increased as a function of 
inhibitor structure (Barak et al. 1997). 

Identification of OP-Modified 
Cholinesterases by MS 
MS was used in early studies of mass shifts of 
AChE after OP exposure, including studies 
of chemical agents (Barak et al. 1997), insec-
ticide and chemical agents (Elhanany et  al. 
2001), and insecticide impurities (Doorn 
et al. 2000). In these studies, the masses of 
whole protein and/or that of the active-site 
peptide were compared with the mass when 
bound to OP (less its leaving group). The 
influence of alkyl group size on aging (loss 
of an alkyl phosphoester group after inhi-
bition) (Figure  6) was investigated using 
ESI‑MS (Barak et al. 1997). Recombinant 
hAChE (64,700 Da) was inhibited by methyl
phosphonate analogs, and the corresponding 
adducts CH3(RO)P(O)–hAChE, where R = 
isopropyl (iPr), isobutyl (iBu), 1,2-dimethyl
propyl, and 1,2,2-trimethylpropyl showed 
measured mass increases of approximately 
120, 140, 152, and 160 Da, representing 
the molecular weight of the added phospho-
nate group. Over time, each of the methyl
phosphonate adducts lost its alkoxy group to 
aging and converged to a mass of 64,780 Da, 
a value that structurally correlates with forma-
tion of a P(O)(CH3)OH adduct. Aging and 
reactivation are intimately tied mechanisms 

for most OP inhibitors of AChE and they 
have direct application to OP insecticide 
inhibitors bearing alkoxy groups. 

Certain chemical agents and insecticides 
share the common structural feature of phos-
phoramide (P–N) group that can undergo 
aging. MALDI-TOF was used to identify 
the active-site peptide of AChE after trypsin 
digestion (Elhanany et al. 2001) by the phos-
phoramides tabun (chemical agent) and 
methamidophos (insecticide) (Figure 6). In 
an experiment designed to exploit the resolv-
ing power of MS, a hexadeuterio analog of 
tabun was used to form OP–AChE adducts; 
after trypsin digestion, the active-site peptide 
adduct showed an increase of 6 mass units 
versus unlabeled tabun (Figure 6). Again, the 
peptide adducts were of identical mass. The 
mechanism of AChE inhibition by meth-
amidophos, previously shown to lose a thio
methyl (Thompson and Fukuto 1982), was 
validated by observation of the correspond-
ing (MeO)(NH2)P(O)–peptide adduct and 
then formation of the free active-site pep-
tide after reactivation (Elhanany et al. 2001). 
Isomalathion, an impurity in the insecticide 
malathion (Figure 6), contains two stereo
centers that cause the mechanism of inhi-
bition to occur via two pathways involving 
the loss of different leaving groups (Berkman 
et al. 1993a, 1993b, 1993c). A series of inves-
tigations by MALDI analysis of the active-site 
peptide determined that a single stereoisomer 
of isomalathion produces aged AChE, that 

is, loss of both thioalkyl groups (Doorn et al. 
2000, 2001a, 2001b).

MALDI was used to study the cova-
lent adduction of rMoAChE by a series of 
dialkoxy phosphates that varied as dime-
thoxy, diethoxy, and diisopropoxy (Jennings 
et al. 2003). The tryptic active site-contain-
ing peptide for rMoAChE was identified at 
m/z 4331.0; inhibition by diethoxy paraoxon 
showed an increase in this native peptide by 
136 m/z. Likewise, inhibition by dimethoxy 
and diisopropoxy reactive OP compounds 
yielded the corresponding adducts (Figure 7). 
The MALDI experiments were correlated with 
kinetic analysis in the identification of the 
corresponding aged adducts for each alkoxy 
form. The ratio of inhibited, aged, and unin-
hibited forms of dimethyl phosphorylated 
AChE was delineated by their MS molecular 
weight signatures with tissue from a single 
mouse treated with sublethal doses of metri-
fonate (a DMOP inhibitor).

Chymotrypsin was used to digest 
rMoAChE into the smaller active-site contain-
ing peptide sequence GESAGAASVGMHIL 
(1298.62 Da) to more easily identify diethoxy 
and dimethoxy peptide adducts (Spaulding 
et al. 2006). A general method for detecting 
human OP–BChE adducts, reported by Noort 
et al. (2006), exploits the dehydroalanine- 
forming elimination mechanism from 
phosphoryl serines to tag proteins. BChE 
(from human plasma samples) that had 
been inhibited by OPs was digested with 

Figure 6. Structures of OP chemical agents and insecticide. 
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pepsin, converted to the dehydroalanine resi-
due using Ba(OH)2, and reacted with amino 
or thiol nucleophiles to afford tagged peptides 
(Figure 8). The best results were achieved 
using 2-(3-aminopropylamino)ethanol to tag 
phosphylated BChE. The converted samples 
were then analyzed using liquid chromatog-
raphy and tandem MS to determine the loca-
tion of BChE modification by OPs. Because 
unmodified BChE does not form dehydro
alanine, this method could be used to screen 
relatively large numbers of samples to detect 
OP exposure. The initial digest can then be 
analyzed more specifically to determine the 
identity of OP inhibitor.

MS Analysis of OP-Modified 
Proteins in Addition to 
Cholinesterases

Cholinesterases are not the only targets of 
reactive OP compounds, and other molecular-
level protein biomarkers have been identified 
with and without the aid of MS. Murray et al. 
(2005) found a number of adducted proteins 
in rat brain homogenates that were exposed to 
a variety of OPs (azamethiphos, chlorfenvin-
phos, diazinon, malathion, pirimiphos-methyl, 
and chlorpyrifos) at concentrations producing 
< 30% inhibition of brain AChE. Tritiated 
diisopropyl fluorophosphate was used to label 

protein targets not adducted by the test OP. 
Although the authors were not able to posi-
tively identify the protein targets, each of the 
six OPs tested adducted a different collection 
of proteins, suggesting that different OPs may 
produce their own specific form of toxicity 
(Murray et al. 2005).

Hundreds of serine hydrolases are expressed 
in the human proteome, and many are poten-
tial targets for OP adduction. Synthesis of 
customized OP probes [fluorophosphonates 
(FPs)] that attach an OP to biotin (FP-biotin; 
Figure 9) or fluorescent molecules such as 
rhodamine permit “fishing” of cell lysates to 
access or identify non-AChE targets that were 
not previously identified (Casida and Quistad 
2005). Examples of these enzymes include 
neuropathy target esterase, carboxylesterase, 
and platelet-activating factor acetylhydrolase 
as potential targets, as well as many other ser-
ine hydrolases. Nomura et al. (2006) identi-
fied serine hydrolase KIAA1363 that is diethyl 
phosphorylated in mouse brain by chlorpyrifos 
oxon. Chlorpyrifos is a unique OP because 
it is highly lipophilic, and its leaving group 
is also implicated in certain toxicities. Blood 
acylpeptide hydrolase activity has been identi-
fied as a possible biomarker of OP exposure 
(Murray et al. 2005; Richards et al. 1999). In 
a number of detailed studies, Costa and col-
leagues advanced paraoxonase (PON1) and 
its isoforms as biomarkers of susceptibility to 
OP toxicity (Costa 1998; Costa et al. 2003, 
2005). In most studies, one protein or path-
way is identified to serve as a biomarker. But 
the measurement of one OP protein target, 
although valuable, can be questionable unless 
background exposure levels are relatively stable 
over time. Moreover, as outlined above, the 
OP-adduction step may not be the sole indi-
cator of an interaction. This limitation holds 
true also for the traditional cholinesterase tests, 
metabolite analysis, and direct measurements.

Molecular probes such as FP-biotin 
(Figure 9) may serve as useful tools in analyz-
ing multiple proteins in complex protein sam-
ples (Adam et al. 2001, 2002; Grigoryan et al. 
2008; Kidd et al. 2001; Liu et al. 1999). The 
probe design contains a reactive OP moiety 
containing a fluoro leaving group and a bio-
tin “catch” group connected by a long linker 
group to allow the reactive OP to reach deep 
into protein structures. Ideally, a proteomic 
experiment will provide protein identification, 
expression levels, and the functional state of 
proteins. In studies aimed at profiling ser-
ine hydrolase activity, FP-biotin probes were 
used to selectively isolate and identify serine 
hydrolases in crude cell and tissue extracts 
and also for the functional characterization 
of these enzymes (Kidd et al. 2001; Liu et al. 
1999) (Figure 9). Although FP-biotins are 
excellent probes of serine hydrolases and other 
OP-reactive proteins, the long lipophilic 

Figure 8. Ba(OH)2-induced dephosphorylation to tag proteins. Adapted from Noort et al. (2006). Nuc, 
nucleophile. 
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tethers and attenuated reactivity as a phospho-
nate compared with phosphate likely select 
for a protein population different from that 
of the OP oxon structures. Thus, differences 
in reactivity and cell permeability properties 
of FP-biotin probes must be considered when 
assessing possible OP–protein biomarkers. 

In one study, Kidd et al. (2001) investi-
gated the rate differences in which the serine 
hydrolases react with FP-biotin probes after 
treatment with oleoyl trifluoromethyl ketone 
(OTFMK), a reversible inhibitor of ser-
ine hydrolases. Serine hydrolase targets were 
identified directly in complex proteomes by 
comparing the rates of binding of the ser-
ine hydrolases to the FP-biotin probes in the 
control and OTFMK-treated samples (Kidd 
et al. 2001). An in vitro assay exposing puri-
fied tubulin to an OP–biotin probe demon-
strated not only that OPs bind this previously 
unidentified target, but also that they bind 
tyrosine residues in tubulin. The OP-reactive 
tyrosine residues reside either near the GTP 
binding site or within loops that interact later-
ally with protofilaments, indicating that this 
binding, if it occurs in vivo, may lead to non
cholinergic toxic outcomes (Grigoryan et al. 
2008). Lockridge and colleagues (Ding et al. 
2008; Schopfer et  al. 2005a, 2005b) also 
used FP-biotin combined with MS to iden-
tify OP-modified proteins in human plasma. 
The plasma was treated with FP-biotin; the 
proteins were separated into low- and high-
abundance portions and digested with trypsin; 
and the FP-biotinylated peptides were isolated 
by binding to avidin beads. Proteins identi-
fied in these studies included albumin, ES1 
carboxylesterase, propionyl and methylcrotonyl 
coenzyme A carboxylase-α, and pyruvate car-
boxylase. The investigators were able to readily 
identify FP-biotin–labeled albumin because of 
its high concentration in human plasma (Ding 
et al. 2008; Schopfer et al. 2005a, 2005b). 
The results demonstrated that albumin is an 
OP scavenger and undergoes a covalent reac-
tion with OP on five tyrosines and two serines 
(Aardema and MacGregor 2002; Peeples et al. 
2005; Schopfer et al. 2005a, 2005b; Wieseler 
et al. 2006). Although the FP-biotin probe 
was unable to identify any additional novel OP 
protein targets, the results from this study sug-
gest that OP–albumin adducts could be used 
to monitor OP exposure (Ding et al. 2008).

FP-biotin has a relatively large structure 
compared with OPs, so it can be argued that 
this probe may react differently with various 
proteins in biological systems and possibly fail to 
detect important OP protein targets. This could 
prove to be problematic with enzymes such 
as AChE and BChE that contain OP binding 
sites located deep within the molecule. Schopfer 
et al. (2005a, 2005b) investigated the rates of 
reactivity and binding affinity of FP-biotin 
with AChE and BChE. The results from their 

study demonstrate that, despite its large biotin 
group, FP-biotin reacts with both AChE and 
BChE at rates comparable to reaction rates of 
other OPs. Therefore, the authors concluded 
that FP-biotin is a potent OP and can serve 
as a useful probe for identifying OP protein 
targets. Taken together, the studies described 
here demonstrate that molecular probes such 
as biotinylated OPs can be powerful tools for 
proteomic studies. Although FP-biotin does not 
precisely simulate OP structure, the ability to 
rapidly isolate and identify labeled proteins in 
crude cell and tissue extracts, as well as provide 
insight into posttranslational events that regu-
late protein function, outweighs some of the 
potential limitations.

Conclusions
The mechanisms by which OP insecticide 
oxons covalently adduct AChE, BChE, and 
other serine hydrolases have been relatively 
well understood, but many of the post
inhibition processes have not been well char-
acterized. Advances in protein MS have clearly 
aided investigators with a new and power-
ful tool to interpret not only the adduction 
event but also the molecular steps that occur 
after adduction. As a result, it is now some-
what routine to investigate not only OP–ChE 
adduct formation but also each step in the 
process that leads to injurious modifications 
of the protein. With these important steps 
accomplished, investigators can now broaden 
the scope of their inquiry into how proteins 
other than cholinesterases are modified by OP 
compounds and, hence, how the connected 
cellular level events may be compromised.
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